Issue Date: 2020-12-01 CEN-CLC/FGQT NO50a

‘E BENELEB Deadline: n/a Supersedes: N0O50
Focus Group on Quantum Technologies Status: FOR APPROVAL

TITLE Use case: Using a Quantum Computer as Secondary Processor in the

Qloud

PROJECT FGQT Roadmap

REFERRING TO NO020a, NO50

SOURCE Niels Neumann (TNO)

CONTACT niels.neumann@tno.nl

Supported by:

o Rob van den Brink (Delft Circuits, The Netherlands),
o Rob.vandenBrink@Delft-Circuits.com,

o https://delft-circuits.com/

o Giovanni Frattini and Antonello Corsi (Engineering Ingegneria Informatica S.p.A., Italy),
o Giovanni.Frattini@eng.it and Antonello.Corsi@eng.it

o http://www.eng.it

ABSTRACT
Explanation of changes

We propose this contribution on use-cases for quantum computers. This contribution focusses mainly
on the technicalities desired when using quantum computers. We propose to add this contribution to
the roadmap document Standardization Roadmap for Quantum Technologies, specifically to section

5: Innovation and use cases.

Why are the changes needed?

This document provides a use case for using cloud-based quantum computing. This in turn helps in
identifying where (additional) standards are desired. The sketched use-case is focused already on
the near-term, where specific problems can be solved more efficiently by using quantum computers.

Instructions for editor

Section 4 to be included as-is in section 5.1.2 Domain-specific use cases of NO20a.

mailto:niels.neumann@tno.nl
mailto:Rob.vandenBrink@Delft-Circuits.com
https://delft-circuits.com/
mailto:Giovanni.Frattini@eng.it
mailto:Antonello.Corsi@eng.it
http://quantware.eu/

CEN-CENELEC FGQT Quantum computing use-case NO50a

1. Situation sketch

Quantum computing has the potential to solve some computational problems efficiently or
provide meaningful gains in other problems. Examples of the former are cryptographic related
problems, such as prime factorization and the discrete-log problem, and simulations of
chemical processes. An example of the latter is machine learning, as quantum computing can
provide meaningful gains in the running time, the number of training steps required or in the
capacity of associative networks.

It is expected that, at least for the foreseeable future, quantum computers will mainly be hosted
on few locations worldwide, which can be accessed remotely. Currently, this means that you
have to log on to some programming environment of the host and program your quantum
algorithm there. Another option is that you program the quantum instructions locally and then
send everything to the host. Ideally however, users are not bothers with technicalities of
implementations and low-level quantum instructions, but instead only with the result of a
guantum routine.

An example of a high-level quantum computing software-stack is shown in Figure 1. Currently,
the separation between a local user and a remote quantum host is high in the stack. Already
on a high level, instructions must be programmed or shared with the quantum computer host.
Therefore, users are required to program their algorithms in low-level instructions.

The desired separation is however lower in the stack, such that users can program quantum
instructions on a high-level and function libraries can be used when programming the quantum
or hybrid algorithm.

Quantum applications
| | |

prc
language 4 ‘

I
pre

p pre p
language 1 | | language 2 language 3 language N ‘

I
intermediatg-level quantun instructions

Q-circuit algorithms

low-levgl quantum instfuctions
T

Back-end Micro i ions 1| [Micro ir ions 2 Micro i ions N

quantum circuit Quantum Quantum Quantum
simulator Processor 1 Processor 2 Processor N

Figure 1: A software stack for quantum computing (from: Van den Brink, Neumann, Phillipson
“Vision on Next Level Quantum Software Tooling”, 2019).

2. Use case of quantum computing

Suppose a eempanyuuser has developed an alqonthm focussed on pattern- recognition has
. 0 hm—with a specific
computatlonally heavy sub- routlne A hybrid algorlthm might provide the solution, however this
requires the algorithm to be partly run on a classical (super)computer and partly on a quantum
computer. As quantum computers are likely to be hosted in the cloud and quantum computing
time can be bought.

In this case, there are two points of attention:
1. The eempany-user will likely not want to share their algorithm;
2. The eempany-user is only interested in the result of the sub-routine.

CEN-CENELEC FGQT Quantum computing use-case NO50a

Currently, the user has to program their algorithm in low-level quantum instruction
and provide those to the host, or program the algorithm in an environment provided by the
quantum host. Instead, the user should be able to program as high-level as possible.
Therefore, a quantum library, with high-level quantum instructions is essential. Instructions in
this library are then compiled to lower-level instructions. The library can be hosted at the user-
side or at the host-side, and similarly for the compilation of the instructions. This quantum
library should be callable from most to all often used classical programming languages. The
user _should be able to opt for running the quantum library locally if the algorithm is
confidential or the user is not willing to share the algorithm for other reasons. Both
the low-level instructions and those supported by the quantum library should at least support
a standard instruction set. Note that these standardized low-level instructions are hardware-
agnostic. In a compilation step, these instructions can be translated to hardware-specific
operations, based on the used hardware-backend.

Furthermore, the compiled quantum instructions are not of interest to the user,
instead, only the end-result is. Therefore, also the used backend quantum-technology is in
general not of interest and could be decided upon automatically, based on requirements
imposed by the algorithm. Finally, error-correcting methods should be applied if needed,
without users having to worry about them. Note that it should be possible for users to indicate
a preference for specific backends, for instances as user agreements may differ between
different quantum computer hosts.

As multiple users may want to use the quantum computer simultaneously, there is a need for
protocols, billing and job-control to facilitate who runs first and for how long. For a specific run,
the user should be able to interact with the cloud-based quantum computer on what
instructions to execute, but also when the calculation is finished and what the results are.

Additionally, the classical part of the algorithm is likely to be run on a high performance
computer (supercomputer). Therefore, the supercomputer must be able to interact with the
guantum computer, sending instructions and retrieving results.

There are two important notes on the above:

1. The standardized low-level gate set should be universal and hardware-agnostic. By high-
level compilation to this standardized low-level gate set, it can in a second step be mapped
to arbitrary hardware-backends. This mapping constitutes translating the low-level gates
to hardware-specific operations, based on the used hardware-backend.

——Current quantum-hardware options require users to
access the devices from a remote environment. The term
cloud in this document relates to how quantum
computers should be used in the future and has
similarities with the classical cloud.

guantum computing

4.3. Requirements for quantum computing
The example presented above sketches various requirements for quantum computing to be
practically used:
- Alocal hybrid programming environment where classical and quantum instructions can
be used;
- Support for high-level quantum instructions;

CEN-CENELEC FGQT Quantum computing use-case NO50a

- Compilation of these high-level quantum instructions to a set of standardized
(hardware-agnostic) low-level instructions (e.g. QASM) and some specific higher level
instructions (e.g. quantum Fourier transform);

- Both local and remote support for compilation. The user may opt to compile locally, or
may have no preference;

- In case of (hardware-agnostic) low-level instructions send by the user, there should be
the option for integration of hardware specific constraints;

- In case of high-level instructions send by the user, there should be messaging to
facilitate debugging;

- Protocols on how to interact with the quantum computer, send instructions and retrieve
results;

- Protocols on billing and job control to determine who runs first and for how long;

- Compilation of quantum instructions to (hardware-agnostic) low-level instructions such
that reconstruction of the original algorithm is hard;

- Translation of (hardware-agnostic) low-level instructions to hardware-specific
elementary operations;

- Automatically apply error-correcting techniques (the necessity of these may depend on
the specific backend);

- Aninterface between the quantum computer and supercomputers, to send instructions
and provide (intermediate) results.

5.4. To be approved text

The following text is to be approved as-is for section 5.1.2: Domain-specific use cases.

Use Case: Using a Quantum Computer as Secondary Processor in the

Coud

A user has developed a pattern-
recognition algorithm with a specific computationally heavy sub-routine. To optimize both the
running time and the results, the user wants to run part of its algorithm on a
guantum computer without revealing the propriety algorithm. The rest of the algorithm is
programmed in an often-used classical programming language and it is run on a classical
(super)computer. Only the result of the quantum-subroutine is needed in the rest of the
algorithm.

This requires a quantum-host and infrastructure, such that the user can run the
guantum-subroutine under the requirements that

- The user can program the algorithm locally in a classical environment using a high-
level classical programming language and additional quantum instructions;

- The quantum instructions can be programmed both on a high- and a low-level;

- The high-level quantum instructions are compiled to hardware-agnostic low-level
instructions, either locally or at the host. The company should be able to decide on this;

- The low-level quantum instructions should be from a hardware-agnostic standardized
gate set;

- If the user decides to compile locally, low-level instructions are send to the
cloud-based quantum computer. The user should then also have the option
to integrate hardware specific constraints. Additionally, this should be taken care of by
the host if needed;

- The hardware-agnostic low-level quantum instructions should then be translated to
hardware-specific instructions, corresponding to the backend;

- If the wuser instead sends high-level instructions to the host, and the
instructions are compiled on the host-side, there should be messaging that
facilitates debugging. Additionally, the wuser should be able to integrate
specific hardware-constraints. Otherwise, the compiler should take care of this;

4

CEN-CENELEC FGQT Quantum computing use-case NO50a

- The high-level quantum instructions may in this case be directly compiled to hardware-
specific instructions;

- Itis hard to reconstruct the original algorithm from the compiled instructions;

- There is a standardized interface allowing for executing (bursts of) quantum
instructions, and the algorithm should automatically call the quantum instructions when
needed;

- Protocols exist such that the user can send their quantum instructions to
the hardware whenever needed, instructions are processed and run and results are
send back to the user;

- Protocols exist on billing and job control to determine who runs first and for how long
among different users;

- Quantum error-correction routines are applied if needed, the user should
have influence on this if desired;

- An interface exists between the quantum computer and (super)computers,
potentially hosted in the cloud, to send instructions and provide (intermediate) results;

- The result of the quantum-subroutine can directly be used by the (super)computer
running the whole algorithm.

